

(12) United States Patent

Dixon et al.

US 6,791,460 B2 (10) Patent No.:

Sep. 14, 2004 (45) Date of Patent:

(54) PATIENT POSITION DETECTION APPARATUS FOR A BED

(75) Inventors: Stephen A. Dixon, Hamilton, OH (US);

Douglas J. Menkedick, Guilford, IN (US); William L. Jacques, Batesville, IN (US); James W. Jones, Gainesville, FL (US); James K. Findlay, Fishers, IN (US); Carl W. Riley, Milan, IN

(US)

Assignee: Hill-Rom Services, Inc., Wilmington,

DE (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/038,986

(22)Filed: Nov. 19, 2001

(65)**Prior Publication Data**

US 2002/0080037 A1 Jun. 27, 2002

Related U.S. Application Data

Continuation of application No. 09/737,111, filed on Dec. 14, 2000, now Pat. No. 6,320,510, which is a division of application No. 09/264,174, filed on Mar. 5, 1999, now Pat.

(51) Int. Cl.⁷ G08B 23/00

(52) **U.S. Cl.** **340/573.1**; 340/5.1; 340/562; 340/572.1; 340/664; 340/666; 340/667; 340/686.1; 5/618; 5/624

340/562, 572.1, 664, 666, 667, 686.1; 5/618,

(56)**References Cited**

U.S. PATENT DOCUMENTS

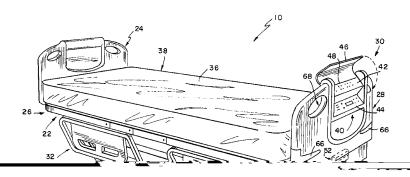
3,325,799 A 6/1967 Farris

3,836,900	A	9/1974	Mansfield
3,926,177		12/1975	Hardway, Jr. et al.
RE28,754	E	3/1976	
3,961,201	A	6/1976	Rosenthal
3,991,414	A	11/1976	Moran
3,991,746	A	11/1976	Hanna
4,020,482		4/1977	Feldl
4,051,522	A	9/1977	Healy et al.
4,172,216	A	10/1979	O'Shea
4,175,263	A	11/1979	Triplett et al.
4,179,692	A	12/1979	Vance
4,195,287	A	3/1980	McCoy et al.
4,228,426	A	10/1980	Roberts
4,242,672	A	12/1980	Gault
4,245,651	A	1/1981	Frost
4,264,904	A	4/1981	McCoy et al.
4,275,385	A	6/1981	White
4,295,133	A	10/1981	Vance
4,320,766	A	3/1982	Alihanka et al.
4,484,043	A	11/1984	Musick et al.
4,539,560	A	9/1985	Fleck et al.
4,565,910	A	1/1986	Musick et al.
4,633,237	A	12/1986	Tucknott et al.
4,638,307		1/1987	Swartout
4,669,136		6/1987	Waters et al.
4,700,180	A	10/1987	Vance

(List continued on next page.)

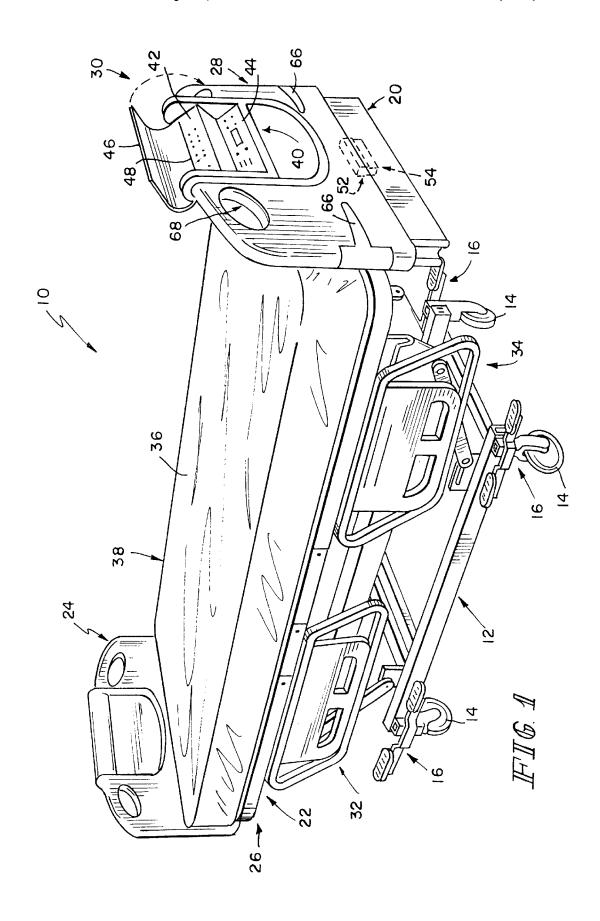
FOREIGN PATENT DOCUMENTS

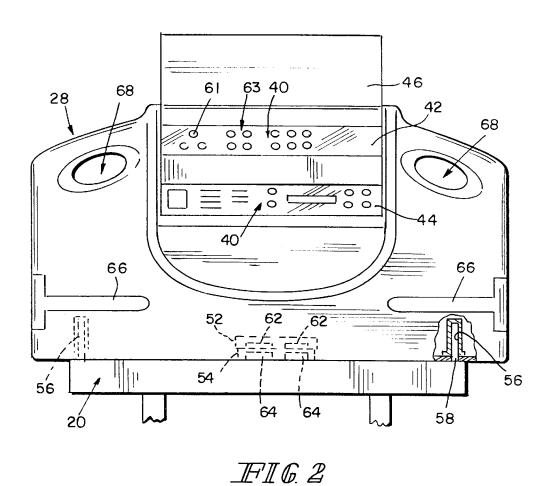
EP 0 860 803 A2 8/1998

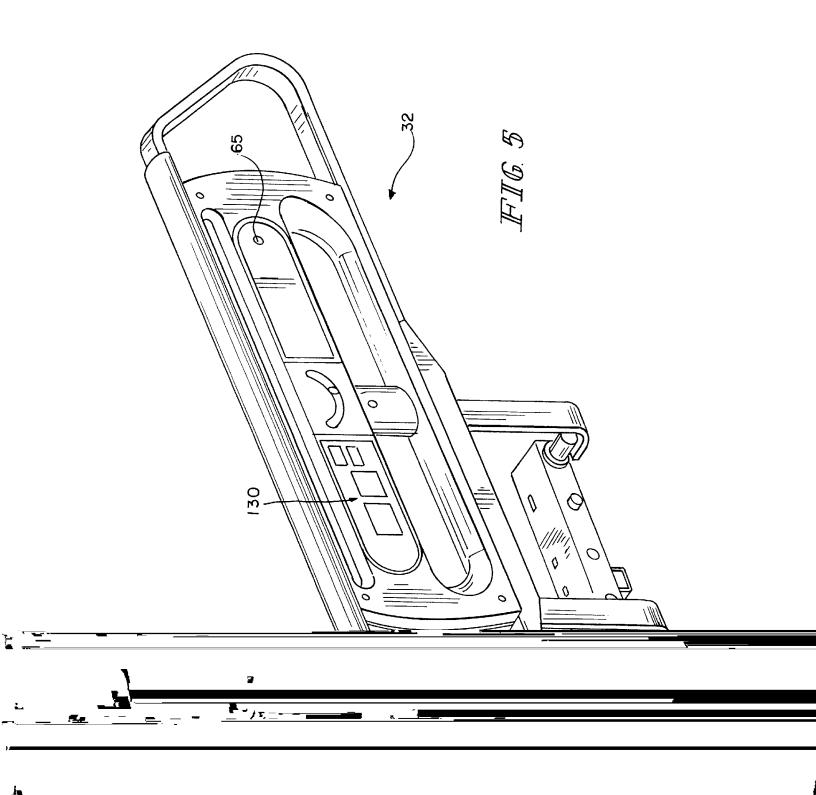

Primary Examiner—Daniel J. Wu Assistant Examiner-Tai T. Nguyen

(74) Attorney, Agent, or Firm-Bose McKinney & Evans LLP

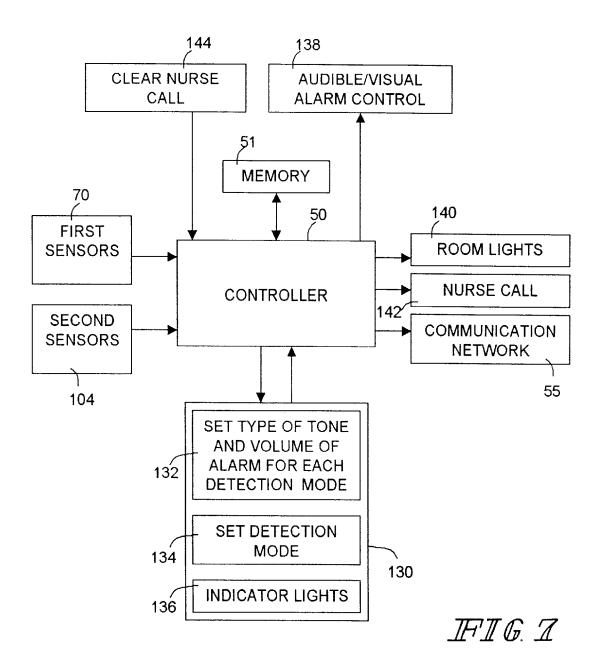
(57)**ABSTRACT**

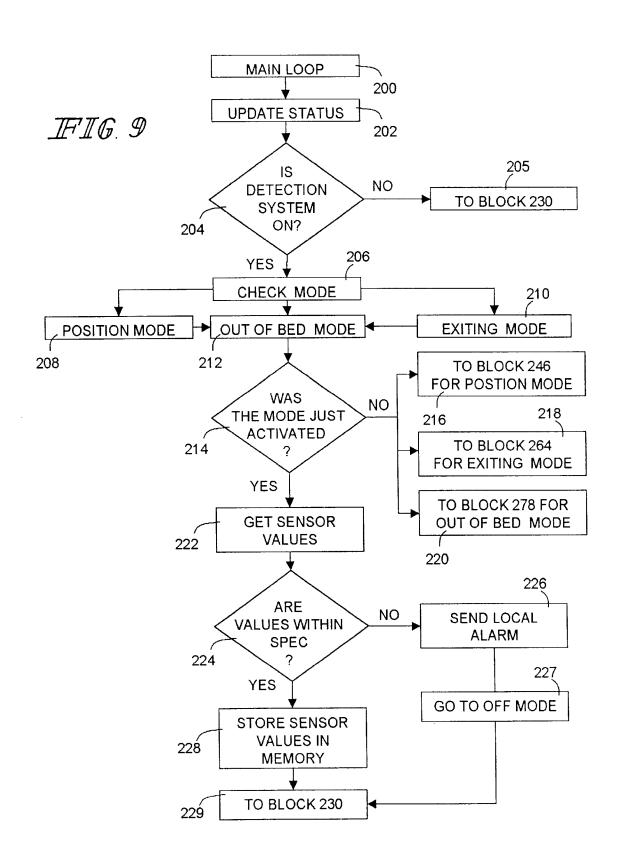

An apparatus for supporting a patient comprises a frame, a mattress supported by the frame, and a patient position detection system including an alarm and at least one sensor configured to detect a position of the patient relative to the mattress. The patient position detection system has at least three different modes of operation.

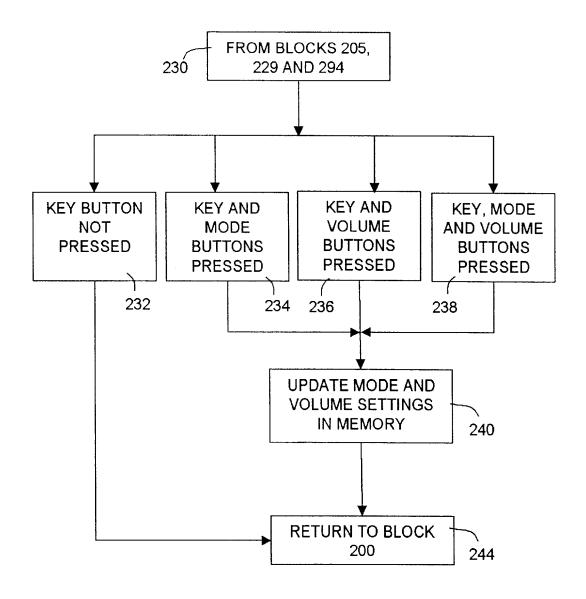

45 Claims, 14 Drawing Sheets


US 6,791,460 B2 Page 2

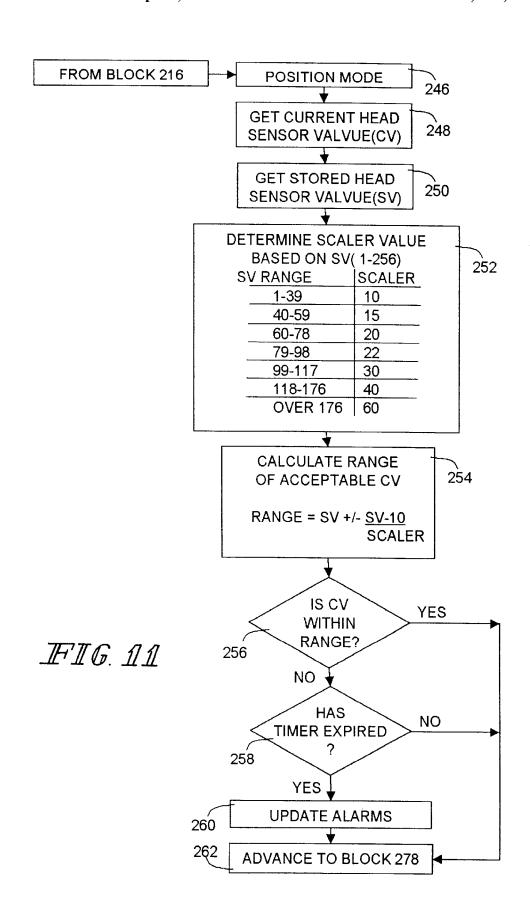
U.S. PATENT	DOCUMENTS		Barham et al 340/573.4
4.702.420.4 12/1000	C		Hasty et al.
	Swersey	5,410,297 A 4/1995	Joseph et al.
4,796,013 A 1/1989	Yasuda et al.	5,448,996 A 9/1995	Bellin et al.
4,803,744 A 2/1989	Peck et al.	5,519,380 A 5/1996	Edwards
4,907,845 A 3/1990	Wood	5.699.038 A 12/1997	Ulrich et al.
4,926,951 A 5/1990	Carruth et al.	5,771,511 A 6/1998	Kummer et al.
4,934,468 A * 6/1990	Koerber et al 177/144	5,780,798 A * 7/1998	Hall-Jackson 200/85 R
4,953,244 A 9/1990	Koerber, Sr. et al.		Wiley et al.
4,974,692 A 12/1990	Carruth et al.	5.844.488 A * 12/1998	Musick 340/573.4
5,140,309 A 8/1992	Gusakov		Ferrand et al.
5,144,284 A 9/1992	Hammett	6,067.019 A 5/2000	
5,184,112 A * 2/1993	Gusakov 340/573.1		Holmes 340/573.4
5,235,319 A 8/1993	Hill et al.		Ide 341/26
5,253,656 A 10/1993	Rincoe et al.		Smith et al 340/573.1
5,269,388 A 12/1993	Reichow et al.		Ulrich et al 340/286.07
5,276,432 A 1/1994	Travis		Lovely et al 340/573.1
5,279,010 A 1/1994	Ferrand et al.	-,, D1	13, 22 5 10,6 75.12
5,335,313 A 8/1994	Douglas	* cited by examiner	

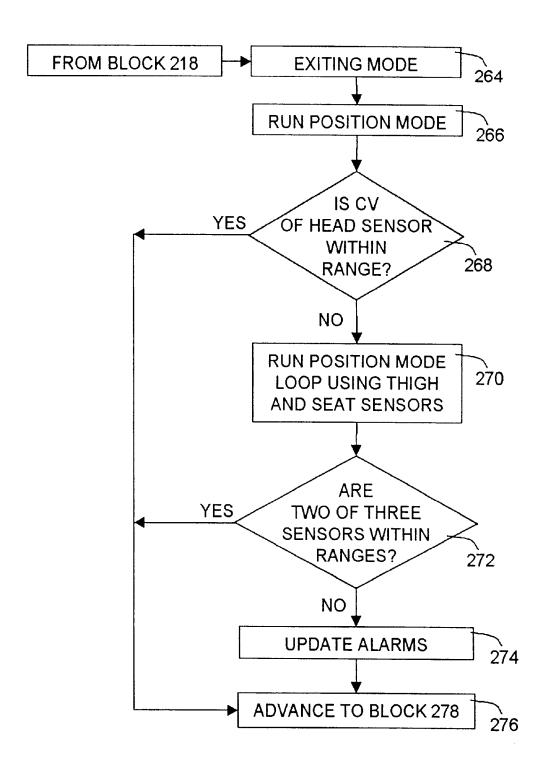


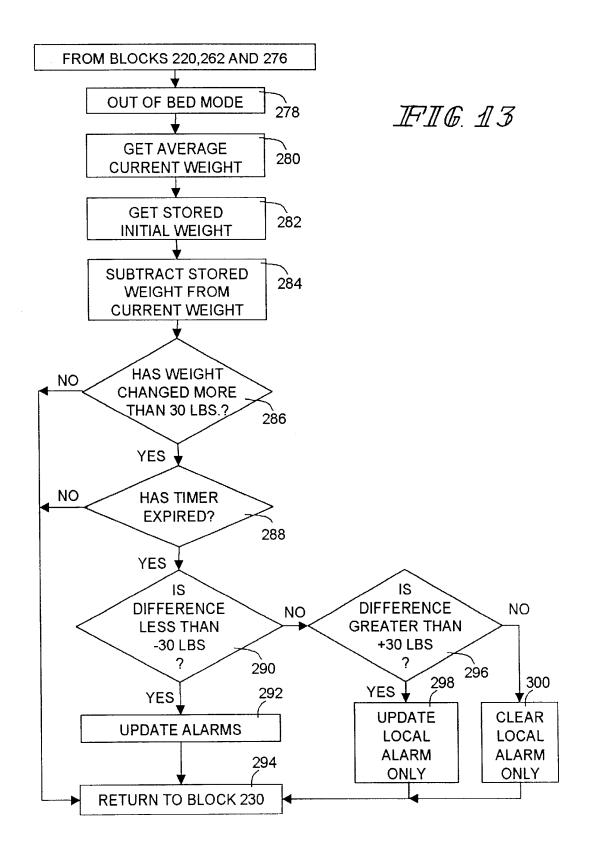


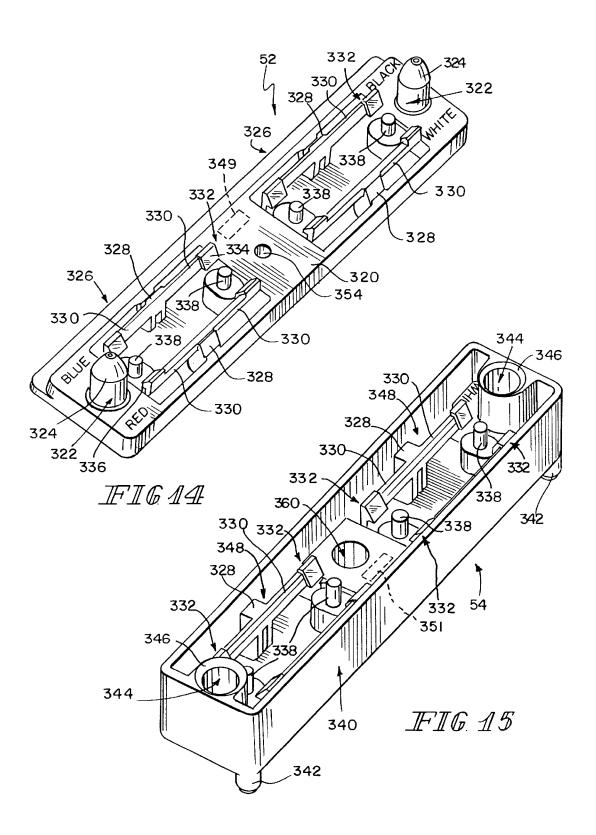


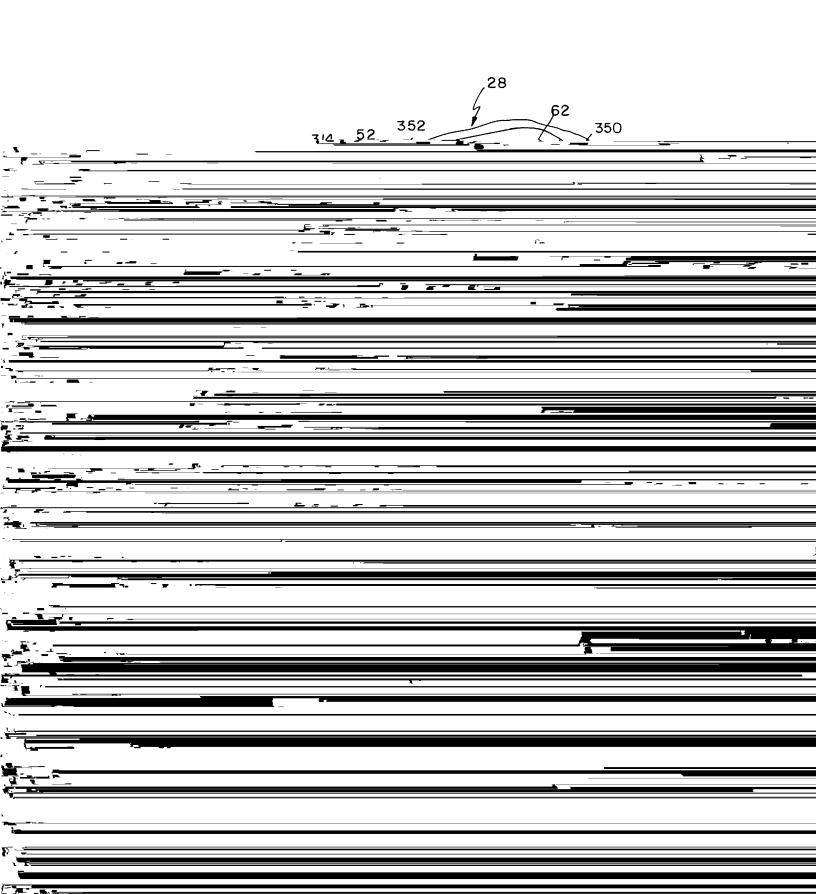
U.S. Patent Sep. 14, 2004 US 6,791,460 B2 Sheet 5 of 14




U.S. Patent US 6,791,460 B2 Sep. 14, 2004 Sheet 7 of 14 / 22




IFIG. 10



IFIG. 12

PATIENT POSITION DETECTION APPARATUS FOR A BED

This application is a continuation of U.S. patent application Ser. No. 09/737,111, filed Dec. 14, 2000, now U.S. 5 Pat. No. 6,320,510, which is a divisional of U.S. patent application Ser. No. 09/264,174, filed Mar. 5, 1999, now U.S. Pat. No. 6,208,250, the disclosures of which are incorporated herein by reference.

BACKGROUND SUMMARY OF THE INVENTION

The present invention relates to a patient position detection apparatus for a bed. More particularly, the present invention relates to a bed exit and patient position detection apparatus which has multiple modes of operation for pro-

2

- FIG. 4 is a partial sectional view illustrating a load cell configured to connect the weigh frame to the base frame;
- FIG. 5 is a perspective view of a head end siderail which includes a control panel for operating the patient position detection apparatus of the present invention;
- FIG. 6 is an enlarged view of the control panel of FIG. 5 which is used to control the mode of operation of the patient position detection apparatus and the volume of the alarms generated by the detection apparatus;
- FIG. 7 is a block diagram illustrating the control electronics of the patient position detection apparatus;
- FIG. 8 is a top plan view of the articulating deck of the bed with the second set of sensors mounted on the deck;
- FIGS. 9 and 10 are flow charts illustrating a main loop of steps performed by the controller for monitoring inputs from the control panel and the first and second sets of sensors to

oward position shows in FIC 1 to an alayated

position (not shown) located above a top surface 36 of therefore provide initial alignment between the footboard 28 mattress 38. Mattress 38 is located on articulating deck 22 and the frame 20. First and second connector alignment apparatuses 52 and 54 provide further alignment for male for supporting a patient thereon. and female electrical connectors 62 and 64, respectively, as The footboard 28 includes a plurality of buttons, knobs, 5 discussed in detail below with reference to FIGS. 14-16. switches or other controls 40 for controlling various func-The patient position detection apparatus of the present tions of the bed 10. Controls 40 are located on a top inclined nand 47 and a hottom inclined nanol 44 on the footboard 29 invention uses two different types of sensors 70, 104. A first

resistive pressure sensors are formed in strips which can be cut to any desired length. The sensor strips are illustratively adhered to a stiffener and then sealed within a protective outer sleeve or cover made from a wipable material. Fastering 116 are illustratively given which some the sensors

6

the nurse call 142 alarm once the nurse call 142 alarm has been activated at the remote nurse call station. Nurse call clear button 144 permits the caregiver to clear or reset the remote patient alarm while at the bed 10 after responding to

114, 120, 122, and 124 in position on the deck 22 as best shown in FIG. 8. Sensors 114, 120, 122, and 124 are coupled to the controller 50 on the bed 10 by wires 126.

As pressure on the sensors 114, 120, 122, and 124 increases, resistance of the sensors is lowered. By processing the output signals from sensors 114, 120, 122, and 124, the controller 50 determines the position of the patient on the deck 22. In particular, the controller 50 determines when the patient moves away from a central portion of the bed and too close to the side edges 23 or 25 on the deck 22. Controller 150 then provides an indication that the patient is at risk of exiting the bed.

Using the two different types of sensors 70 and 104, the patient position detection apparatus of the present invention is capable of operating in several different modes to assist the caregiver with tracking the patient position on the bed 10. In an out-of-bed mode, only sensors 70 are used to activate an alarm when a patient completely exits the bed. In a second exiting mode, both sets of sensors 70, 104 are used. An alarm is activated when a patient is located at a position near the sides 23, 25 of deck 22 or on the deck 22 near the head end 26 or foot end 30. In other words, a pre-exit alarm is sounded when the patient moves outside a central portion of the deck 22 on the bed 10. In a third position mode, both sets of sensors 70, 104 are also used. An alarm is activated when a patient moves away from the head sensor 114 on the deck 22 as discussed below.

FIG. 7 is a block diagram illustrating the electronic control components of the patient position detection apparatus. As discussed above, the first and second sensors 70 and 104 are each coupled to the controller 50. The controller

nurse call bed exit alarm 142 by returning to the nurse call station or by deactivating the alarm somewhere else in the hospital, other than at the bed 10. Button 144 permits the caregiver to clear the nurse call bed exit alarm 142 after responding to the alarm condition at the bed 10. Controller 50 is also coupled to a communication network 55 so that the controller 50 can transmit output signals to a remote location.

In an alternative embodiment of the present invention, controller 50 is programmed to deactivate the local alarm 138 if the patient returns to bed 10 or returns to a correct position on the bed 10 depending upon the mode selected. This feature may encourage the patient to return to the correct position on the bed 10 since the alarm will be deactivated when the patient returns to the correct position. The nurse call alarm 142 typically remains activated so that the caregiver may still respond to the alarm, even if the local audible and visual room alarm 138 is deactivated.

FIG. 6 illustrates further details of the caregiver control panel 130 which is illustratively located on the head end siderail 132. Control panel 130 includes a key button 150, a mode control button 152, and a volume control button 154. In order to adjust the detection mode or volume of the alarm, the caregiver must depress the key button 150 and hold it down while depressing the desired mode button 152 or volume button 154. With the key button 150 held down, the caregiver can scroll through the modes of operation by pressing the mode button 152. Separate indicator LEDs are provided to indicate which mode is selected. The Position Mode is indicated by LED 156, the Exiting Mode is indicated by LED 158, and the Out-of-Bed Mode is indicated by

control panel 30 to indicate an alarm condition for that mode. More than one of the LEDs 156, 158, and 160 can flash. For instance, in Position Mode, the Position Mode LED 156 may begin to flash when an alarm condition is detected by the Position Mode. Since the Out-of-Bed Mode is also run in Position Mode, the Out-of-Bed LED 160 may also be flashing if the patient has exited the bed.

Caregiver control panel 130 also includes an indicator LED 170 to provide an indication that the bed 10 is not down. This indicator LED 170 is lit when the deck 22 is not in its lowest position relative to the floor. In addition, caregiver panel 130 includes an indicator LED 172 which provides an indication when the brake on the casters 14 is not set. When positioned in a room, the bed 10 is typically set so that the deck 22 is in its lowest position and the brake is set. Therefore, indicator LEDs 170 and 172 provide the caregiver with an indication that these conditions are not met.

FIG. 8 shows the illustrative arrangement of the sensors 114, 120, 122, and 124 on the articulating deck 22. It is understood that other arrangements of the second set of sensors 104 may be used in accordance with the present invention. In addition, additional sensors may be provided such as a sensor 125 located on the leg deck section 112. Although the second sensors 104 are illustratively resistive sensors, it is understood that other types of sensors may be used in accordance with the present invention. For example, capacitance sensors such as shown in U.S. Pat. No. 5,808, 552 or in U.S. Pat. No. 6,067,019, which are incorporated herein by reference, may be used as the second sensors. In addition, a piezoelectric sensor such as disclosed in U.S. Pat. No. 6,252,512, filed Mar. 5, 1999, entitled A MONITORING SYSTEM AND METHOD, which is hereby incorporated by reference may also be used. In another embodiment, the sensors 104 are coupled to a stop or bottom surface of the mattress 38 or are located within an interior region of the mattress 38.

FIGS. 9-12 are flow charts illustrating operation of the controller 50 of the present invention and each of the three patient position detection modes. The main software loop of the controller 50 is illustrated in FIGS. 9 and 10. The main loop begins at block 200 of FIG. 9. Controller 50 first updates the status of the indicator lights 136 on control panel 130 or elsewhere as illustrated at block 202. Controller 50 then determines whether the patient detection system is on at block 204. If the detection system is not on, controller 50 advances to block 230 as illustrated at block 205. If the patient detection system is on, controller 50 checks the mode of the detection system as illustrated at block 206. Specifically, controller 50 determines whether the detection system is in position mode as illustrated at block 208, exiting mode as illustrated at block 210, or out-of-bed mode as illustrated at block 212.

If the controller is in position mode as illustrated at block **208** or exiting mode as illustrated at block **210**, the controller **50** will run the control loops for these modes as discussed below. After running the positioning mode loop or the exiting mode loop, the controller **50** will also run the out-of-bed mode loop when the controller is set in position mode or exiting mode. In other words, if the detection system is on, the out-of-bed mode will always be checked.

Controller **50** then determines whether the mode was just activated at block **214**. If the particular mode was not just activated, the controller **50** advances to block **246** of FIG. **11** if the system is in position mode as illustrated at block **216**. If the particular mode was not just activated, controller **50**

8

advances to block **264** of FIG. **12** if the system is in exiting mode as illustrated at block **218**. If the particular mode was not just activated, controller **50** advances to block **278** of FIG. **13** if the system is in out-of-bed mode as illustrated at block **220**.

If the mode was just activated at block 214, controller 50 reads all the sensor values from the first and second sets of sensors 70 and 104 as illustrated at block 222. Controller 50 then determines whether the sensor values are within the preset specifications as illustrated at block 224. In the position mode, controller 50 is only concerned with the head sensor 114. Therefore, in position mode, the output from head sensor 114 is checked. The output value from sensor 114 is within specification if the head sensor 114 output signal corresponds to a range of weights between 50–450 lbs. Therefore, for position mode, the sensor 114 is typically not within specification if the head sensor 114 is not plugged in, shorted, or if a patient is not on the bed 10.

For exiting mode, controller 50 checks all the load cells 70 and sensors 114, 120, 122, and 124. To be within specification for exiting mode, the weight range detected by load cells 70 must be within a predetermined range based on average human weights. Controller 50 also determines whether any of the sensors 114, 120, 122, or 124 are not plugged in or are shorted. In the out-of-bed mode, controller 50 only looks at load cells 70 to make sure that at least a predetermined minimum weight reading is obtained in order to indicate that a patient is on the bed 10.

If the values read at block 222 are not within specifications, controller 50 will send a local alarm as illustrated at block 226 so that the caregiver can investigate the problem as illustrated at block 226. Controller 50 then turns the detection system off as illustrated at block 227 and advances to block 230 as illustrated at block 229. If the retrieved sensor values are within the specifications at block 224, controller 50 stores all the sensor values in memory 51 as illustrated at block 228. Controller 50 then advances to block 230 as illustrated at block 229.

In the illustrated embodiment, the key button 150 on control panel 130 is a hardware switch. If the key button 50 is not pressed, the controller 50 does not receive the signal from the mode button 152 or the volume button 154. Therefore, if the key button is not pressed as illustrated at block 232, controller 50 returns to block 200 as illustrated at block 244. If the key button 150 and the mode button 152 are pressed as illustrated at block 234, the controller 50 will receive an input based on the mode button press. If the key button 150 and the volume button 154 are pressed as illustrated at block 236, the controller 50 will receive an input signal from the volume button 154 press. If the key button 150, the mode button 152, and the volume button 154 are all pressed as illustrated at block 238, the controller 50 will receive input signals from both the mode button press and the volume button press. If the key button and at least one other button are pressed at blocks 234, 236, and 238, controller 50 will update the mode and volume settings in memory 51 as illustrated at block 240. Controller 50 then returns to block 200 as illustrated at block 244.

Operation of the controller 50 in position mode is illustrated beginning at block 246 of FIG. 11. Controller 50 first reads the current value of head sensor 114 as illustrated at block 248. The current head sensor value is abbreviated as CV. Next, controller 50 retrieves the stored value for head sensor 114 which was stored in memory 51 at block 228 as illustrated at block 250. The stored sensor value is abbreviated as SV. Controller 50 then determines a scaler value

based upon the stored head sensor value. In the illustrated embodiment, an 8 bit A/D converter is used to convert the output from the sensors 104. Therefore, the value SV ranges from 1–256 in the illustrated embodiment. Smaller values of SV indicate larger weight on the sensors 104. It is understood that this range could be varied depending upon the particular A/D converter used. Therefore, the range of 1–256 is only for illustrative purposes. Controller 50 sets the scaler value as illustrated in the table at block 252. The scaler value remains constant until the mode is reactivated. Next, controller 50 calculates the acceptable range for the current head sensor value (CV) as illustrated at block 254. The acceptable range is:

$$\left(SV - \frac{SV \cdot 10}{\text{SCALER}}\right) < CV < \left(SV + \frac{SV \cdot 10}{\text{SCALER}}\right)$$

Controller 50 determine whether the surrent bead some

block 272, controller 50 determines that the patient is out of position and updates the local alarms 238, activates the nurse call alarm 142, and may turn on the room lights 140 as illustrated at block 274. Controller 50 then advances to block 230 as illustrated at block 276. In exiting mode, the patient position detection apparatus of the present invention permits the patient to move around more on the deck 22 before an alarm is activated compared to the position mode. Therefore, position mode is the most sensitive setting for the patient position detection apparatus of the present invention.

It is understood that other configurations may be provided for the locations of sensors 104. A different number of sensors 104 may be used. The sensors 104 may be mounted at different locations on the deck 22, on the mattress 38, or elsewhere on the bed 10.

Operation of the patient position detection system in the out-of-bed mode is illustrated beginning at block **278** in FIG. **13**. Controller **50** advances to block **278** from block **220** in

value CV is within the acceptable range as illustrated at block 256. If so, controller 50 determines that the patient is in the proper position on the deck and returns to block 230 as illustrated at block 262. If the current head sensor value is not within the acceptable range at block 256, controller 50 determines whether a timer has expired at block 258. If not, controller 50 advances back to block 230. If the timer has expired, controller 50 determines that the patient is out of position and activates the local alarms 138 as illustrated at block 260. Controller 50 also activates a nurse call alarm 142, and may turn on the room lights 140 at block 260. Controller 50 then advances to block 278 and runs the out-of-bed mode check as illustrated at block 262.

Operation of the patient detection system in exiting mode is illustrated beginning at block 264 in FIG. 12. Controller 50 advances to block 264 from block 218 in FIG. 9. In exiting mode, controller 50 first runs the positioning mode loop as illustrated at block 266. In other words, the controller 50 uses head sensor 114 to check the patient's position using the flow chart discussed above in reference to FIG. 11. Controller 50 determines whether the current head sensor value CV is within the acceptable range as illustrated at block 268. If so, controller 50 determines that the patient is in the proper position and advances to block 278 to run the out-of-bed mode check as illustrated at block 276 in FIG. 12.

If the head sensor value is not within the acceptable range at block 268, controller 50 runs a sensor test for seat sensor 120 and thigh sensors 122 and 124 using a similar test as in FIG. 11. Scaler values may be adjusted for the different sensors 120, 122, and 124, if necessary. Scaler values are selected by applying a known load above a particular sensor location and taking an output reading. Next, a predetermined distance from the sensor is selected at which point it is desired to activate the alarm. The known weight is than moved to that desired alarm location and another output reading is taken. The scaler value is calculated the percentage change between the output of the sensor when the

FIG. 9. In the out-of-bed mode, controller 50 detects an average current weight of the patient as illustrated at block 280. For instance, the controller 50 can take four readings from each load cell 70 and divide by four to get an average current weight. Next, controller 50 retrieves the stored initial weight from memory 51 as illustrated at block 282. Controller 50 subtracts the stored weight from the current weight as illustrated at block 284.

Next, controller 286 determines whether the weight on the bed 10 detected at block 280 has increased or decreased by more than 30 lbs. compared to the initial stored weight retrieved at block 282. If the weight has not changed by more than 30 lbs., controller returns to block 230 as illustrated at block 294. If the weight has changed by more than 30 lbs. at block 286, controller 50 determines whether a timer has expired at block 288. If the timer has not expired, controller 250 advances to block 230 as illustrated at block 294. If the timer has expired at block 288, the controller 50 determines whether the difference calculated at block 284 is less than -30 lbs. at block 290. If so, controller 50 determines that the patient has exited the bed 10 and updates the local alarms 138, the nurse call alarm 142 and may turn on the room lights 140 as illustrated at block 292. Controller 50 then returns to block 230 as illustrated at block 294.

If the difference is not less than -30 lbs. at block 290, controller 50 determines whether the difference calculated at block 284 is greater than 30 lbs. as illustrated at block 296. If so, controller 50 determines that substantial additional weight has been added to the bed and updates local alarms 138 only as illustrated at block 298. The nurse call alarm 142 may also be activated, if desired. Controller 50 then advances to block 230 as illustrated at block 294. If the difference is not greater than 30 lbs. at block 296, controller 50 clears the local alarm only at block 300 and then advances to block 230 as illustrated at block 294.

It is understood that the 30 lbs. threshold value for the out-of-bed mode may be adjusted upwardly or downwardly

in order to arm the bed exit detector. In the out-of-bed mode of the present invention, removing the patient from the bed is not required in order to arm the bed exit detection system.

The patient position detection system of the present invention may be quickly switched from a normal bed exit system in which an alarm is generated only when a patient exits the bed to a predictive bed exit system in which an alarm is generated when a patient moves away from a center portion of the bed. In an embodiment of the invention, the output signals from the first and second set of sensors 70, 104 are monitored and stored, either at the bed 10, or at a remote location to record movements of the patient. The controller 50 or a controller at the remote location monitors the sensor output values to determine whether the patient is moving on the bed 10. In one embodiment, the controller 50 or controller at a remote location generates a caregiver alert signal or alarm if the patient has not moved on the bed within a predetermined period of time. Therefore, the caregiver can go to the bed 10 and rotate the patient in order to reduce the likelihood that the patient will get bed sores. For example, if the patient hasn't moved for a predetermined period of time, such as two hours, a signal is generated advising the caregiver to move the patient. If the sensors 70, 104 and controller detect that the patient has moved within the predetermined period, then there is no need for the caregiver $_{25}$ to go turn the patient. Therefore, no signal is generated. This feature saves caregiver time and reduces the likelihood of injuries due to unnecessary rotation of a patient who has been moving.

In another embodiment of the present invention, the 30 output signals from the four sensors 70 located at the corners of the base frame 12 are used to provide an indication when one of the frames or the deck hits an obstruction when moving from the high position to a low position. In particular, the processor 50 determines when an output 35 signal from one of the sensors 70 at the corners generates a negative value or a greatly reduced weight reading within a

than terminals 312. The terminals 312 are electrically connected to conductors of a cable 314. Cable 314 of connectors 62 are connected to controls 40. Connector alignment apparatus 54 is configured to receive female electrical connectors 64. Those numbers referenced by numbers on connectors 62 perform the same or similar function. Connectors 64 include female socket contacts 318 configured to receive terminals 312 of connector 302. Illustratively, cables extending from connectors 64 are coupled to the controller 50 on bed 10.

Referring now to FIG. 14, connector alignment apparatus 52 includes a base plate 320 having outwardly extending alignment posts 322 located at opposite ends. Posts 322 each include tapered head portions 324. Alignment apparatus 52 includes a pair of connector receiving portions 326. Connector receiving portions 326 each include a pair of center posts 328. Each post 328 includes a pair of spring arms 330. Each spring arm 330 has a head portion 332 including a ramp surface 334 and a bottom lip 336. Each connector receiving portion 326 also includes a pair of posts 338.

Electrical connectors 62 are installed into the connector receiving portions 326 by locating the apertures 310 on flanges 308 over the posts 338 and pushing the connector 62 toward base 320. Flanges 306 engage ramp surfaces 334 of heads 332 and cause the spring arms 330 to be deflected. Once the flanges 306 move past the heads 332, heads 332 then move over flanges 306 to retain the connectors 302 within the connector alignment apparatus 52 as best shown in FIG. 16.

Second connector alignment apparatus 54 is best illustrated in FIG. 15. The alignment apparatus includes a body portion 340 having a pair of downwardly extending alignment posts 342. Body portion 340 is formed to include apertures 344 at opposite ends. Apertures 344 are configured to receive the posts 322 of first connector alignment apparatus 52 as discussed below. Lead-in ramp surfaces 346 are formed around the apertures 344. Body portion 340 further includes a pair of connector position positions 340 which

within apertures 362 formed in the surface 356 of the frame 20. Housing 340 is therefore not rigidly coupled to frame 20 and can float slightly due to the oversized apertures 362 and the oversized aperture 360.

During installation of the footboard 28 on to the frame 20, initial alignment is provided by posts 58 on frame 20 extending into the apertures 56 formed in the footboard 28. As the footboard 28 moves downwardly over the posts 58, the posts 322 on first connector alignment apparatus 52 enter the apertures 344 in the second connector alignment apparatus 54. Tapered surfaces 324 on posts 22 and tapered surfaces 346 of apertures 344 facilitate insertion of the posts 322 into the apertures 344. Since the housing 340 of second connector alignment apparatus 54 can float on the frame 20, the housing 340 moves into proper alignment with the first 15 connector alignment apparatus 52 as the footboard 28 is installed. This ensures proper alignment between connectors 62 and 64. Typically, connectors 62 and 64 include further alignment posts 313 and apertures 315, respectively, which mate to make sure that each of the terminals 312 line up with 20 the socket contacts 318. Therefore, the connector alignment apparatus of the present invention includes a combination of posts 58 on the frame 20 which mate with aperture 56 on the footboard 28, posts 322 on the first connector alignment apparatus 52 which mate with apertures 344 on the second 25 connector alignment apparatus 54, and posts 313 on connectors 62 which mate with apertures $31\overline{5}$ on the connectors 64 to provide further alignment.

Although the invention has been described in detail with reference to certain illustrated embodiments, variations and modifications exist within the scope and spirit of the invention as described and as defined in the following claims.

What is claimed is:

- 1. An apparatus for supporting a patient, the apparatus comprising:
 - a frame,
 - a mattress supported by the frame, and
 - a patient position detection system including an alarm and being configured to detect a position of the patient relative to the mattress, the patient position detection system having at least first, second, and third alarm modes of operation, the patient position detection system being configured to provide for selection of one of 45 the first, second, and third modes as a selected mode, the first mode of operation resulting in an alarm being activated in the event the first mode is the selected mode and the patient moves by a first amount, the second mode of operation resulting in the alarm being 50 activated in the event the second mode is the selected mode and the patient moves by a second amount greater than the first amount, and the third mode of operation resulting in the alarm hem activated in the event the third mode is the selected mode and the 55 patient moves a third amount greater than the second
- 2. The apparatus of claim 1, wherein the third mode of operation results in the alarm being activated in the event the patient exits the mattress.
- 3. The apparatus of claim 1, wherein the patient position detection system includes at least one first sensor coupled to the frame, the at least one first sensor having an output signal witch is variable in response to changes in a weight applied to the mattress, at least one second sensor located adjacent 65 the mattress, the at least one second sensor having an output signal which is variable in response to changes in the

14

position of the patient on the mattress, and a controller having inputs configured to receive the output signals from the first and second sensors, the controller being configured to monitor the output signals, to provide an indication of changes in the position of the patient relative to the mattress, and to activate the alarm.

- 4. The apparatus of claim 3, wherein the at least one first sensor is a load cell and the at least one second sensor is one of a resistive pressure sensor, a capacitance sensor, and a piezoelectric sensor.
- 5. The apparatus of claim 1, further comprising a deck coupled to the frame, the mattress being located on the deck, the deck including a head deck section, a seat deck section, a thigh deck section, and a leg deck section, and wherein at least one head sensor is coupled to the head deck section, at least one seat sensor is coupled to the seat deck section, and at least one thigh sensor is coupled to the thigh deck section.
- 6. The apparatus of claim 1, wherein the patient position detection system includes a controller coupled to the at least one sensor and first, second, and third mode indicator lights which correspond to first, second, and third modes of operation of the patient position detection system, respectively, the controller being coupled to the first, second, and third mode indicator lights to indicate which mode has been selected.
- 7. The apparatus of claim 1, wherein the patient position detection system includes a controller coupled to the at least one sensor and further comprising a control panel coupled to the controller to permit a caregiver to select between the first, second and third modes of operation.
- 8. The apparatus of claim 7, wherein the control panel includes an actuator to permit the caregiver to adjust a volume of the alarm.
- 9. The apparatus of claim 7, wherein the control panel 35 includes a key button and a separate mode button, the controller permitting the caregiver to change the mode of operation by pressing the mode button only in the event the key button is also pressed.
- at least one sensor, the patient position detection system being configured to detect a position of the patient relative to the mattress, the patient position detection system having at least first, second, and third alarm modes of operation, the patient position detection sys-
 - 11. The apparatus of claim 1, wherein the patient position detection system is coupled to a communication port to provide a nurse call alarm to a remote location when the alarm is activated.
 - 12. The apparatus of claim 1, wherein the first mode of operation results in the alarm being activated in the event the patient moves away from a central region of the mattress by a first distance, the second mode of operation results in the alarm being activated in the event the patient moves away from the central region of the mattress by a second distance greater than the first distance, and the third mode of operation results in the alarm being activated in the event the patient exits the mattress.
 - 13. The apparatus of claim 1, wherein the patient position detection system is configured to activate the alarm in the event the system is in one of the modes and a patient approaches exiting the mattress.
 - 14. The apparatus of claim 1, wherein the patient position detection system further includes a single mode selector configured to permit scrolling selection of the first, second, and third modes.
 - 15. The apparatus of claim 1, wherein the patient position detection system includes a plurality of sensors and a

controller that receives signals from the plurality of sensors and determines whether to activate the alarm based on the signals and the selected mode.

- 16. The apparatus of claim 15, wherein each of the plurality of sensors has an electrical resistance that varies with the position of a patient on the mattress.
- 17. The apparatus of claim 15, further comprising a deck positioned over the frame, wherein the mattress is positioned on the deck and the plurality of sensors includes a plurality of load cells supporting the weight of the deck and mattress.
- 18. The apparatus of claim 1, further comprising a footboard positioned on a foot end of the apparatus and a display coupled to the footboard wherein the patient position detection system includes a plurality of sensors, the display is configured to indicate the weight of a patient positioned on the mattress based on signals generated by the plurality of 15 sensors.
- 19. The apparatus of claim 1, wherein the patient position sensor further includes a digital controller and an A/D converter configured to convert an analog signal from the at least one sensor to a digital signal.
- 20. An apparatus for supporting a patient, the apparatus comprising:
 - a frame,
 - a mattress supported by the frame, and
 - a patient position detection system including an alarm and 25 the patient position detector having first, second, and third modes of operation, the first, second, and third modes being selectable to permit adjustment of a sensitivity of the patient position detection system, in the event the first mode is selected, the alarm is 30 activated in response to the patient moving a first distance, in the event the second mode is selected, the alarm is activated in response to the patient moving a second distance greater than the first distance, and in the event the third mode is selected, the alarm is 35 activated in response to the patient moving a third distance greater than the second distance.
- 21. The apparatus of claim 20, wherein the third mode of operation results in the alarm being activated in the event the patient exits the mattress.
- 22. The apparatus of claim 20, wherein the patient position detector includes a plurality of sensors configured to generate an output signal which is variable in response to changes in a weight applied to the mattress and an output signal which is variable in response to changes in the 45 position of the patient on the mattress, and patient position detector further includes a controller configured to receive the output signals from the plurality of sensors, the controller being configured to monitor the output signals, to provide an indication of changes in the position of the patient relative 50 to the mattress, and to activate the alarm.
- 23. The apparatus of claim 20, wherein the the first mode of operation results in the alarm being activated in the event the patient moves away from a central region of the mattress by the first distance, the second mode of operation results in 55 the alarm being activated in the event the patient moves away from the central region of the mattress by the second distance, the third mode of operation results in the alarm being activated in the event the patient exits the mattress.
- 24. The apparatus of claim 20, further comprising a deck 60 coupled to the frame, the mattress being located on the deck, the deck including a head deck section, a seat deck section, a thigh deck section, and a leg deck section, and wherein the patient position detector includes at least one head sensor coupled to the head deck section, at least one seat sensor 65 coupled to the seat deck section, and at least one thigh sensor coupled to the thigh deck section.

16

- 25. The apparatus of claim 20, further comprising first, second, and third mode indicator lights which correspond to the first, second, and third modes of operation of the patient position detector, respectively, the patient position detector being coupled to the first, second, and third mode indicator lights to indicate which mode has been selected.
- 26. The apparatus of claim 20, further comprising a control panel coupled to the patient position detector to permit a caregiver to select between the first, second and third modes of operation.
- 27. The apparatus of claim 26, wherein the control panel includes a key button and a separate mode button, the patient position detector being configured to permit the caregiver to change the mode of operation by pressing the mode button only in the event the key button is also pressed.
- 28. The apparatus of claim 20, wherein the patient position detection system is configured to activate the alarm in the event the system is in one of the modes and a patient approaches exiting the mattress.
- 29. The apparatus of claim 20, wherein the patient position detection system further includes a single mode selector configured to permit scrolling selection of the first, second, and third modes.
- **30**. The apparatus of claim **20**, wherein the patient position detection system includes a plurality of sensors and a controller that receives signals from the plurality of sensors and determines whether to activate the alarm based on the signals and the selected mode.
- 31. The apparatus of claim 30, wherein each of the plurality of sensors has an electrical resistance that varies with the position of a patient on the mattress.
- 32. The apparatus of claim 30, further comprising a deck positioned over the frame, wherein the mattress is positioned on the deck and the plurality of sensors includes a plurality of load cells supporting the weight of the deck and mattress.
- 33. The apparatus of claim 20, further comprising a footboard positioned on a foot end of the apparatus and a display coupled to the footboard, wherein the patient position detection system includes a plurality of sensors, the display is configured to indicate the weight of a patient positioned on the mattress based on signals generated by the plurality of sensors.
- **34**. The apparatus of claim **20**, wherein the patient position sensor further includes a digital controller and an A/D converter configured to convert an analog signal from the at least one sensor to a digital signal.
 - 35. A patient support comprising:
 - a frame,
 - a mattress supported by the frame, and
 - a patient position detection system including a controller, an alarm, and a plurality of sensors, the controller being configured to receive data from the plurality of sensors indicative of the position of the patient relative to the mattress, the patient position detection system having a first mode of operation in which the controller activates the alarm to indicate that the patient is in a first position relative to the mattress, the patient position detection system having a second mode of operation in which the controller activates the alarm to indicate that the patient is in a second position relative to the mattress, the patient position detection system having a third mode of operation in which the controller activates the alarm to indicate that the patient is in a third position relative to the mattress, the data received by the controller from the plurality of sensors also being used by the controller to determine a weight of the patient resting on the mattress.

- **36**. The patient support of claim **35**, further comprising a display configured to display the weight of the patient.
- 37. The patient support of claim 36, further comprising a footboard positioned adjacent a foot end of the patient support, wherein the display is supported by the footboard. 5
- 38. The patient support of claim 37, wherein the footboard is removable from the frame, the frame includes a first electrical connector, the footboard includes a second electrical connector that couples with the first electrical connector when the footboard is coupled to the frame to provide 10 electrical communication to the display, and the second electrical connector is spaced apart from the first electrical connector when the footboard is removed from the frame.
- **39.** The patient support of claim **35**, further comprising a barrier positioned adjacent a perimeter of the mattress, the 15 barrier including a selector in communication with the controller, the selector being configured to permit a user to select one of the first, second, and third modes as a selected mode.
- **40**. The apparatus of claim **39**, wherein the selector is 20 configured to permit scrolling selection of the first, second, and third modes.
- 41. The patient support of claim 35, wherein the plurality of sensors includes a plurality of load cells in communication with the controller to determine the weight and position 25 of the patient.
- **42**. The patient support of claim **41**, further comprising a deck supporting the mattress, wherein the plurality of load cells support the weight of the deck and the mattress.
 - 43. A patient support comprising:
 - a frame,
 - a deck positioned above the frame,
 - a mattress positioned above the deck, and
 - a patient position detection system including a controller, an alarm, and a plurality of sensors, the controller being

18

configured to receive data from the plurality of sensors indicative of the position of the patient relative to the mattress, the patient position detection system having a first mode of operation in which the controller activates the alarm to indicate that the patient has moved a first distance from a location on the mattress, the patient position detection system having a second mode of operation in which the controller activates the alarm to indicate that the patient has moved a second distance from the location on the mattress, the patient position detection system having a third mode of operation in which the controller activates the alarm to indicate the patient has moved a third distance from the location on the mattress, the second distance being greater than the first distance, the third distance being greater than the second distance, the patient position detection system being configured to permit selection of the mode of operation to permit adjustment of a sensitivity of the system before the alarm is activated, the plurality of sensors including a plurality of load cells supporting the weight of the deck and providing data to the controller to determine the position of the patient and a weight of the patient resting on the mattress.

44. The patient support of claim 43, further comprising a footboard positioned adjacent a foot end of the patient support and a display supported by the footboard.

45. The patient support of claim 44, wherein the footboard is removable from the frame, the frame includes a first electrical connector, the footboard includes a second electrical connector that couples with the first electrical connector when the footboard is coupled to the frame to provide electrical communication to the display, and the second electrical connector is spaced apart from the first electrical connector when the footboard is removed from the frame.

* * * * *